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Abstract – Machine learning algorithms are extensively 

being used in the field of bioinformatics. With the invent of 

new genome sequencing techniques there has been a 

considerable increase in the amount of data available in the 

biological databases. In research projects, such as 

determining the structure and function of biological 

molecules, the role of machine learning is evident. The 

machine learning algorithm learns a new concept or function 

from some past experience. When given new examples, it 

classifies them based on the concept learned. In this article, 

our goal is to empirically evaluate how well the standard 

machine learning algorithms perform in classifying 

metagenomic data. Our approach involves classifying the 

sequence reads into respective species by performing a 

codon analysis on the DNA sequences and extracting 

features that are representative of the sequence reads. We 

compared the performance of six well known supervised 

learners - decision trees, Naïve Bayes, support vector 

machines,  artificial neural networks, Bayesian networks and 

decision tables . We also analyzed the performance of three 

different meta-learners namely bagging, boosting and 

stacking. Experimental results are described which 

investigate the technique being presented. 

Keywords: Bioinformatics, binning, ensemble methods, 

machine learning, metagenomics, supervised learners.  

 

1 Introduction  

1.1 Overview 

  Metagenomics is the study of organisms that cannot be 

cultured in the laboratory. Metagenomic DNA sequences can 

be found in samples directly extracted from natural habitats 

such as land, sea water etc. Metagenomics facilitates the study 

of a large population of microbial organisms such as bacteria, 

archea, and viruses [1]. Microbial organisms can be found 

everywhere such as land, sea water and even in the gut of 

human beings. Extracting the genomic data from such 

environmental samples enables us to study all the micro-

organisms ranging from bacteria, archea and microeukaryotes 

that are involved in regulating the earth‟s ecological balance. 

Bacteria, archea and viruses belong to the group known as 

prokaryotes - i.e. the organisms which lack a nucleus. The 

sequences which are directly taken from natural habitats such 

as land, sea water, or the gut of human beings are known as 

metagenomes and the study of this sequence data is known as 

metagenomics [2]. The sequencing of metagenomic data 

allows us to explore and analyze the organisms which cannot 

be cultured in the laboratory [1].  

Machine learning algorithms are being applied to various 

application domains that are related to the field of 

bioinformatics. One such field is metagenomics. The role of 

bioinformatics in the field of metagenomics is: (1) to find 

genes for detecting novel proteins; (2) to find evolutionary 

relationships among organisms. It is obvious that these 

algorithms are being applied to sequence reads because the 

data set is large enough and finding a method which is 

capable of handling such huge amounts of data is required. At 

the same time the need for computational methods arise 

because of the fact that they automate or speed up the process. 

Machine learning is nothing but building a model based on 

certain data or previous knowledge, which is known as the 

training data. When we have an unknown/unseen example and 

want to predict which category/class it belongs to, we do so 

by using the model which has been built on some previous 

knowledge.  

Consider „n‟ examples of the form {(x1,y1), … , (xn,yn)}. 

The function y = f(x) varies for different inputs of „x‟. The xi 

values are vectors of the form {xi1, xi2 , . . . , xin}. These 

vectors are called features or attributes of xi.  These features 

can be either discrete valued or continuous. Yi is known as the 

target attribute. The target attribute, also called label, can take 

either continuous or discrete values. If the target attribute 

takes values from a discrete set of classes {1, …, K}, then it is 

a classification problem. In case of a regression problem the 

target attribute will take values from the real line (continuous) 

[3].  Machine learning algorithms can be applied either to the 

problem of regression or classification. Regression is used for 

predicting the values of a continuous variable, whereas 

classification is used when we classify the examples into a 

number of discrete categories or classes.  

When the learning algorithm is given „n‟ training examples 

of labeled data it learns the concept and outputs a model. 

When new/unseen examples, called the test set, are presented 

to the learned model it outputs a prediction of the target 

attribute value based on the concept learned. This is known as 

supervised learning. Some of the supervised learners are 



decision trees, support vector machines, artificial neural 

networks. On the other hand unsupervised learning, i.e. 

learning without a target attribute, usually involves similarity-

based approaches. The examples are partitioned into different 

clusters or classes. When a new example is presented it is 

assigned one of these clusters based on the similarity. One of 

the well-known unsupervised clustering algorithms is K-

means. 

1.2 Related work 

Metagenomics is an active area of research which deals 

with the study of the microbial world. It has been the major 

area of focus of many recent sequencing projects. Using 

metagenomics researchers were able to determine the 

functional role of the molecules and also the chemical 

reactions taking place which aid in the process of symbiosis. 

The researchers also focused on the phylogenetic 

classification of these organisms. Phylogenetic classification 

helped researchers to determine what other kind of species, 

genera or phyla are present in the metagenomic sample [4]. 

The sequence data which is extracted by shotgun sequencing 

or other functional sequencing methods yields sequences 

which are fragmented in nature. The reads obtained can 

belong to either different species or they can belong to the 

same species with different strains. Gene assembly of reads 

which belong to different species can be easily done, but 

assembling genes of same species with different strains is 

quite a challenging task [5].  

The sequence data obtained from such sequencing methods 

highly depends on the environment from which the sample is 

taken. In other words, there is a high significant correlation 

between the sequencing data obtained and the origin of the 

sample [2]. There are a variety of genome assemblers 

available such as Arachne [6], PCAP [7], Atlas [8]. All the 

above mentioned genome assemblers work on the same 

principal concept of assembling genome sequences from 

shotgun reads. The assembled fragments are then searched for 

probable genes. The two famous gene-finding techniques are 

GLIMMER [9], FgenesB_Annotator [10]. Glimmer is a 

system for finding genes of prokaryotes such as bacteria, 

archae and viruses. It uses hidden markov models which are 

among the most popular statistical models. 

FgenesB_Annotator is a package which does an automatic 

annotation of bacterial genomes.  

Assigning reads to reference genomes or finding the 

similarity to known species is termed as grouping or 

classifying the sequences. Researchers in the metagenomic 

community term it as “binning” [11]. Using this concept of 

binning, the reads are assigned their taxa and hence can be 

classified. There are both supervised and unsupervised 

learning mechanisms to find genes in reads of sequences or to 

assign them to reference genomes. In the case of supervised 

learning the reads should be assigned labels or target attribute 

values of reference genomes. 

There are many different methods by which genes are being 

discovered. One common way is to take the sequence reads 

and perform a blast against the known genes. Some of the 

common supervised programs are BLAST [12] and MEGAN 

[13]. BLAST is a program which enables comparison of a 

query sequence with a database of known sequences. It then 

identifies the sequences which match the query sequence 

based on some statistical similarity measure of matches. 

Metagenomic data present challenges here, as there is little 

knowledge about these organisms and the fragments of 

sequences are thought to be incomplete. So even with BLAST 

we cannot obtain accurate similarity searches of the query 

sequence to the sequences present in the databases. MEGAN 

is another similarity search based tool. It offers both a 

graphical and statistical analysis of the sequence. The 

sequence is assigned the taxa based on sequence alignment.  

MEGAN assigns the new query sequence to the sequence 

which has the highest similarity score. Similarity based 

approaches such as BLAST and MEGAN can be of little help 

in finding novel genes when we consider metagenomic data as 

there could be no reference homologues present in the 

databases [2].  

Another way to predict genes is to find them based on the 

structural analysis of the composition of the DNA sequence. 

This can be achieved by either finding the coding regions or 

the non-coding regions or just searching for ORFs in the 

sequence and then using these features to build statistical 

models which can predict novel genes. When we look at a 

DNA sequence we cannot find any difference between the 

metagenomic data and the data that is used in other genomic 

projects. To us it may seem as the sequence data of 

metagenomic samples is similar to that of other sequencing 

data because at the abstract level we know that sequences are 

nothing but strings of A, T, G and C. But if we take into 

consideration patterns, the biological structure, functional role 

and long range sequences, they differ [14]. 

Many programs have been developed for predicting genes, 

which make use of statistical models. Orphelia [15] is one 

such program which uses a two stage machine learning 

approach to compute the gene probability. The program uses 

artificial neural networks to find the probable genes in the 

given sequences. Orphelia has two different programs which 

work for sequence lengths of 300 bp and 700 bp. MetaGene 

[16] is another program which is used for sequence lengths of 

(~700 bp) and is used to predict genes in prokaryotes.  

MetaGeneAnnotator [17] is the successor of MetaGene, and is 

available as a web server application. GeneMark [18] is yet  

another program which uses unsupervised  learning and the 

algorithm used is iterative hidden Markov models. The 

program is based on heuristic approaches. Even though all the 

above programs are available as a web server application 

MetaGene, MetaGeneAnnotator and GeneMark support only 

sequence reads which are of (~700 bp) in length where as 

Orphelia supports sequences of length 300 bp and 700 bp. Our 

approach supports variable length sequence reads. 



The approach used in this article is different from the above 

mentioned programs as we are trying to classify the sequences 

into a known set of species rather than trying to find genes in a 

particular sequence. Our main goal is to assist in the process 

of finding relationships among species as to how similar they 

are. This is a novel approach to the problem of classification. 

This is accomplished by first finding the important attributes 

present in the sequence data. Then, these features are given as 

input to a machine learning algorithm. The algorithm learns 

from the data and presents a model to the user. The model is 

then validated for correctness, by giving it a set of examples 

known as the test set, to see how well the model performs on 

unseen examples. In [11], the authors used Naïve Bayes 

classifier for assigning reads to respective phylogenetic 

groups. In our study we have not limited ourselves to just one 

classifier but tried a variety of different classifiers, both 

supervised and ensemble learners to determine which 

classifier performs well on such metagenomic data.  

The rest of the article is organized as follows: in Section 2 

we introduce our methodology and show how the features are 

extracted from the sequence data. In Section 3 we present the 

performance of various algorithms.  In Section 4 we discuss 

future work and the article is concluded in Section 5. 

2 Approach 
 

2.1 Data selection 

The data which is used in our experiments is available on 

Comprehensive Microbial Resource [19]. The data is selected 

in such a way that each species selected has a different genus. 

We randomly select 75 different species based on the criterion 

that each species should belong to a different genus. This set 

of 75 species is equally divided into 3 groups of 25 species 

each. From each of these groups we remove 10 species to 

form the set of 15 species. Two sets of experiments are 

performed for each group: one with the initial set of 25 species 

and the other with the set of 15 species. As the species 

selection is stochastic, in order to validate our approach we 

report the average accuracy of the 3 groups. As shown in Fig. 

1, species which are selected for our experiments belong to 

different genus. 

 

2.2 Data pre-processing 

The FASTA file of each species contains a number of 

different reads of DNA sequences. The number of reads and 

the average length of each read vary according to the species 

being selected. The average number of reads of DNA 

sequences in a file of each species would be approximately 

3500 and the length of DNA sequence would be between 300-

1000 bp. 

The next step in our approach is to extract the features or 

attributes, for the machine learning algorithms to learn the 

concept and then to bin them into groups. The attributes or 

features we selected are the GC content, number of ORFs, uni-

base frequency, di-base frequency, average length of ORF. GC 

content is the most important feature to consider because of 

the relative stability of the bond between the G and C bases 

rather than A and T bases [20]. If the DNA sequence has a 

pattern such that it begins with a start codon (ATG,CTG,GTG, 

or TTG),  which is followed by at least 54 bp, and then ends 

with a stop codon (TGA,TAG, or TAA) then such a pattern is 

known as an „Open Reading Frame or ORF [15]. Codons in 

biology are subsequent, non-overlapping triplets. We 

considered ORFs with overlap as the relative lengths of the 

sequences are short. By considering ORFs with overlap we get 

a good count of the number of ORFs in a sequence even 

though the sequences are short [15].  
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Fig. 1. Shows how sequence lengths are distributed among the 

different genera. 

The DNA sequences which are in the FASTA format have a 

sequence identifier followed by the sequence itself. We first 

compute the GC content and then find the probable ORFs for 

each read of DNA sequence. As the sequence can be 

translated in six different ways, we find the ORFs in all 

possible frames (3 on positive strand, 3 on the minus strand). 

Now iterating through each ORF we look for codons with a 

pattern. Uni-base frequency is the term, which we use for 

codons which contain only one unique nucleotide, namely 

AAA, TTT, GGG, CCC. Di-base frequency is the frequency 

of the codons which contain two unique nucleotides, such as 

ATA, TTA, GGC, CGC and so on. We did not consider the 

feature tri-base frequency (codons which differ by all three 

nucleotides) as the features uni-base, di-base and tri-base are 

complementary. 

This set of five features along with the species label (i.e. to 

which species the sequence belongs) forms the input to the 

machine learning algorithm. One sample tuple would be of the 

form (number of ORFs, uni-base frequency, di-base 

frequency, average length of ORFs, GC content, name of the 

species). Here, the name of the species is the target attribute 

which is discrete valued. In this way we process all the 



sequences such that for each sequence we have a tuple which 

gives a statistical representation of the underlying data. Fig. 2 

shows a diagrammatic representation. 

 

Fig. 2. Step-by-step illustration of our approach. 

After the data has been processed and the features extracted 

the next step is to present it as an input to some machine 

learning algorithm. 

 

2.3 Learning methods 

The machine learning algorithms which we use are decision 

trees, decision tables, neural networks, support vector 

machines, and Naïve Bayes, Bayesian networks. Ensemble 

learners such as bagging, boosting and stacking are also used. 

We use the University of Waikato‟s WEKA [21] software 

which is an open source data mining software written in Java, 

to run the experiments. The Weka package has 

implementations of various popular machine learning 

algorithms. 

We use a validation method approach wherein the data is 

randomly split into two sets of 80% and 20% known as the 

training/validation set and the testing set. The algorithm builds 

the model based on the training set and then the test set is 

presented to the model to see how well it performs. Another 

way of validating the data is by using N - fold cross validation 

approach. In this approach the data is partitioned into N 

disjoint subsets, trained on N-1 subsets and the remaining one 

set is used for validation. This process is repeated for N times 

and the average accuracy is reported. Cross validation is 

generally used when the size of the data set is small which is 

not the case in this research.  

The first classifier used is the decision tree. The target 

attribute is the name of the species to which the sequence 

belongs. The target attribute in this case is discrete valued, and 

hence decision trees can be used. The algorithm used is J48 

which is an extension to the C4.5 algorithm, developed by 

Quinlan in 1993. The construction of the tree follows a top 

down approach. All the attributes are evaluated by a statistical 

measure called information gain [22]. The attribute with the 

highest value of information gain will be the root of the tree. 

The algorithm is then called recursively for every sub-tree. To 

avoid overfitting of the data the tree is pruned. Overfitting is a 

phenomenon in which the model is able to predict correct 

outputs for the training examples but does not generalize well 

to unseen examples. This usually happens when training is 

performed for a long time or when the training examples are 

very rare. It fits the model very well to the training data and 

hence the performance on the training set increases 

considerably but it undermines the performance on new 

unseen data. Similar to decision trees, decision tables also 

involve selecting the attributes by discarding the irrelevant 

attributes from the decision table. 

The second classifier we used to evaluate the data is Naïve 

Bayes. It is a supervised learning algorithm in which the target 

function can take in any discrete value. It uses a probabilistic 

model where the probabilities of the attributes are calculated. 

When given a new example to classify the classifier assigns 

the most probable target attribute value given the other (non-

target) attributes [22]. Bayesian network is a probabilistic 

graphical model that represents a set of random variables and 

their conditional independencies via a directed acyclic graph. 

Bayesian networks are similar to naïve Bayes except for the 

fact that they make weaker assumptions for conditional 

independance between attributes. Both Naive Bayes and 

Bayesian networks are relatively fast and take just few minutes 

to train and classify the instances. 

The third classifier used is the multilayered perceptron 

Artificial Neural Network (ANN) trained by the back-

propagation algorithm. ANN‟s are useful when the training 

data has lot of noise. The squared error between the target 

output and the network values is minimized by adjusting the 

weights [22]. It takes 10 times as long to train a neural 

network (on the order of few hours on a desktop) as compared 

to Naïve Bayes which in turn is slower than decision trees. To 

prevent overfitting of data we changed the default values of 

the parameters. We used a validation set size of 25%, 

validation threshold of 20 epochs and trained the network for 

500 epochs. This will allow the network to stop on the 

validation error and not because the number of epochs have 

been exhausted. We chose these parameters because the 

domain exhibits a „saw tooth‟ behavior. The threshold needs 

to be kept high and the number of epochs needs to be 

increased. It may help in such a domain to increase both the 

learning rate and the momentum term to speed up the training 

process. 

Support Vector Machines (SVMs) are really popular in 

application domains where the data is linearly separable. It can 

also be applied to problems of either regression or 

classification. We used the Sequential Minimal Optimization 

algorithm which has been implemented in Weka. Training 

times are faster as compared to ANN but is slow compared to 

decision trees and Naïve Bayes. 



Ensemble methods aim at enhancing the performance of a 

given statistical model. Ensemble learning is to combine 

models of either the same type or of a different type. 

„Bagging‟, „boosting‟ and „stacking‟ all fall into the category 

of ensemble learners or meta-learners. Bagging and boosting 

combine models of the same type (usually called the base-

classifier type) while stacking combines models of different 

types (i.e. generated by different algorithms). Bagging is also 

known as boot strap aggregation. For bagging and boosting we 

used J48 as the base-classifier because it gave the best 

performance in the first set of experiments. For stacking we 

combined a total of five classifiers. The base-classifiers (level-

0) used for stacking are Naïve Bayes, SVM, Bayesian 

network, decision table, and the level-1 or meta-level classifier 

was J48. There is no hard and fast rule to select which 

classifiers are to be used for level-0, level-1 classifiers so we 

selected the faster classifiers because stacking requires much 

more time than single-classifier learning. 

 

3 Experiments & Results 

3.1 Evaluation approach 

The performance of our classifiers is tested using validation. 

We used an 80-20 split of the data, where 80% of the data is 

used for training/validation and 20% of the data as the test set 

[23].  The classifier is evaluated on how well it classifies the 

20% of the examples based on the learned concept. Other 

metrics based on which a classifier can be evaluated include 

Sensitivity, Specificity, and Accuracy. True positives (TP) are 

the number of positive examples classified as positive. False 

negatives (FN) are the number of positive examples which are 

classified as negatives. True negatives (TN) are the number of 

negative examples which are classified as negative. False 

positives (FP) are the number of negative examples which are 

classified as positive [22].  

We can define sensitivity and specificity as statistical 

measures of performance of the binary classification test, 

namely: 

                    Sensitivity = TP ∕ (TP+ FN )                (1)                               

                    Specificity= TN ∕ (TN + FP )                (2) 

   Accuracy= (TP+TN ) ∕ (TP+FN +TN +FP ) (3) 

 

We evaluate our results based on the metric of accuracy, 

which can be thought of as the proportion of instances which 

are correctly classified. 

 

3.2 Results 

Experiments are performed for 3 groups of 15 and 25 

species respectively. The number of instances given to the 

classifiers is approximately 45,000 in the case of 15 species 

and approximately 77,000 for 25 species. Among meta-

learners bagging and boosting with base-classifier as J48 

perform better than stacking. Also, training time of J48 is fast 

as compared to all the other learning algorithms, the worst 

being ANN which takes hours to build the model. 

A closer look at the resulting decision tree reveals that the 

attribute GC content is always selected as the root of the tree. 

As GC content is an important feature in determining the 

functional roles of the species, it has the highest information 

gain and hence is selected as the root of the decision tree. 

 

Table I: Accuracy of supervised learners on three independent 

groups of 15 species 

Algorithm 1st Group 2nd Group 3rd Group Average 

J48 92.7218 90.6375 92.3518 91.9037 

Bayes Net 91.2564 91.0585 92.2176 91.5108 

Decision 

Table 

92.0281 89.3444 91.0466 90.8036 

ANN 87.4951 83.1997 85.4111 85.3686 

NB 81.8875 84.0517 86.4967 84.1453 

SVM 82.6886 74.4611 83.6545 80.2680 

 

 

Table II: Accuracy of meta-learners on three independent 

groups of 15 species. 

Method 1st Group 2nd Group 3rd Group Average 

Bagging 93.0148 91.4395 93.0471 92.5004 

Boosting 92.8292 91.5297 93.1447 92.5012 

Stacking 92.1551 89.9559 91.4979 91.2029 

 

 

Table III: Accuracy of supervised learners on three 

independent groups of 25 species. 

Algorithm 1st Group 2nd Group 3rd Group Average 

Bayes Net 91.1732 86.0028 86.4445 87.8735 

Decision 

Table 

91.0554 84.5153 85.7273 87.0993 

J48 88.2888 86.1439 86.4586 86.9637 

ANN 84.9694 76.8402 81.9026 81.2374 

NB 78.5845 75.2437 77.2411 77.0231 

SVM 76.489 63.5804 69.8024 69.9572 



Table IV: Accuracy of meta-learners on three independent 

groups of 25 species. 

Method 1st Group 2nd Group 3rd Group Average 

Bagging 92.4611 87.2852 87.7522 89.1661 

Boosting 92.3747 87.5417 87.0491 88.9885 

Stacking 90.6 84.791 85.6641 87.0183 

 

As we can see from Table I., decision trees gave the best 

performance for 15 species. For 25 species, Table III shows 

that the Bayesian network performs best but the performance 

of decision trees is still comparable. Also, when we compared 

the performance for 15 and 25 species, we expected the 

accuracy with 15 species to be much better compared with 25 

species. This is because in a classification problem with 15 

species the random guessing accuracy is expected to be 1/15 

or 6.66%, which is higher than that for 25 species (only 4%). 

However, we noticed that the accuracy for 25 species was not 

much worse than that of 15 species. 

For meta-learners, bagging and boosting perform better than 

stacking. From the results we can see that the performance of 

bagging and boosting is higher than J48. We also tried 

bagging and boosting other classifiers such at the Bayesian 

network but the best results were obtained with J48 as the base 

classifier. Also, we can see that the performance of stacking is 

almost equal to that of J48. From Tables II and IV, we can see 

that the accuracy of the meta-learners for 15 species is higher 

than that of 25 species.   
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Fig 3. Comparison of accuracies of 15 and 25 species for 

supervised      learners. 
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Fig. 4 Comparison of accuracies of 15 and 25 species for 

meta-learners. 

In [11], the authors used the Naïve Bayes classifier for 

assigning reads to phylogenetic groups. The features used are 

k-mer frequencies, and they vary „k‟ from 7 to 10. They 

introduced prior knowledge of genomes by a preliminary 16S 

survey. The Naïve Bayes classifier without any prior 

knowledge performs with an accuracy of 32.9% for 7-mers 

and it gradually increases to 43.9% as number of k increases 

from 7 to 10. To improve the performance they used prior 

knowledge and the assignment accuracies range from 57.4% 

to 60.5% as the number of k-mers increase from 7 to 10. For 

15 species we have an accuracy of 83.35% using Naïve Bayes, 

with only five features and without the use of any prior 

knowledge.  

4 Future work 

An extension to the work would be to implement a two 

phase approach of classifying the sequence reads into 

respective species first and then by using some statistical 

analysis determine whether that sequence contains a gene or 

not. We also plan to evaluate our results by adding more 

features. Feature selection approaches such as wrapper 

methods can then be used to improve the performance of the 

various machine learning algorithms.  

Finally, we are currently working on applying our approach 

to sequence reads which are unknown. We take all the 

sequence reads present in 15 species and to that set of 

sequence reads we add reads of sequences from species which 

are selected randomly and which are distinct from the 15 

species that are selected above. We check to see how many of 

these unknown sequence reads actually get classified as 

unknown. This way we can simulate a real world problem of 

mixed sequence reads. We can then evaluate the scalability of 

the methods and see how well the algorithms perform on such 

mixed data. 



5 Conclusion 

The motivation behind this work is to see which machine 

learning algorithm does well on classifying or binning the 

metagenomic data. We address an important problem in the 

field of bioinformatics, which is to observe relationships 

among species. Our approach is to apply well known 

supervised learners and also meta-learners to determine which 

of the evaluated learning approaches is most accurate on this 

task. The work is significant as we always have samples of 

sequences which are mixed or which belong to different 

species with metagenomic data. When we want to separate the 

sequences so that they belong to different phylogenetic 

groups, then this work can help significantly to decide which 

machine learning algorithms to use.  

In this article, we presented a novel approach for classifying 

the sequences into the respective species by well known 

machine learning algorithms. The features selected, though 

only few, were clearly very good at differentiating the data. 

The accuracy for all the three groups of each number of 

species (15 or 25) is close, indicating the consistent 

performance of the learning algorithms. Our results suggest 

that decision trees can be used to bin the sequence reads in a 

metagenomic sample. Furthermore, the performance of 

decision trees can be slightly improved by bagging and 

boosting. Also, the results indicate that machine learning 

algorithms such as decision trees, Bayesian networks, decision 

tables, artificial neural networks, support vector machines, 

Naïve Bayes can greatly aid in the important task of binning 

metagenomic data.  
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