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Abstract— Metagenomics deals with the study of micro-

organisms such as prokaryotes that are found in samples from 

natural environments. The samples obtained from the 

environment may contain DNA from many different species of 

micro-organisms including bacteria and archea. Micro-

organisms are responsible for most of the symbiotic activity on 

earth. They are also responsible for the complex chemical 

reactions which take place on the surface of the earth, which 

help maintain earth’s ecological balance. With the increase in 

genome sequencing projects there has been a considerable 

increase in the amount of assembled sequencing data. In this 

article, we apply supervised learners namely decision trees, 

Bayesian networks and decision tables to see how the 

performance degrades when the number of species present in 

the metagenomic sample increases. We also try to see how the 

performance of the metagenomic sample changes as the 

percentage of unknown sequences in the metagenomic sample 

is varied. 

Keywords- Bayesian Networks, Binning, Bioinformatics, 

Decision Trees, Machine Learning,  Metagenomics. 

I.  INTRODUCTION 

Prokaryotic microbes, including Bacteria and Archea, are 
found in all diverse environments on Earth, ranging from 
soil, seawater or human intestine to deep-water hydrothermal 
vents characterized by extreme pressure and temperature. 
They are essential to all life on our planet. Metabolic 
activities of prokaryotes helped shape the Earth‟s 
environment to be able to support higher forms of life and 
many eukaryotic organisms rely on prokaryotic symbionts 
for survival. Until recently, the DNA sequencing of 
prokaryotic genomes was limited to those that could be 
cultivated in the laboratory. However, many prokaryotes 
cannot be cultivated outside their natural environment, which 
often involves complex microbial communities.  

In order to facilitate the study of uncultivated micro-
organisms a new field known as „metagenomics‟ has 
emerged in the area of genetic research [1]. Metagenomics 
allows us to study microbial communities in order to 
understand the roles they play in the environment, in our 
own bodies, or as symbionts of plants and animals. 
Metagenomic data is obtained from DNA samples extracted 
from various environments, such as sea water, land and 
human guts. The DNA is sheared into small fragments, 
which are randomly “sequenced”. That is, the exact sequence 

of nucleotides in the fragment is determined. Those 
nucleotide sequences are often referred to as „fragments‟ or 
„reads‟. Some of the most popular sequencing methods are 
Sanger sequencing and 454 sequencing. Nowadays, large 
scale sequencing projects yield sequences which are between 
300-1000 nucleotides in length.  

Analysis of the nucleotide sequences generated by 
metagenome sequencing projects represents one of the major 
computational challenges of the present bioinformatics. The 
data typically consists of hundreds of thousands of individual 
sequence reads, which originated from many different 
organisms present in the original sample. At the same time, 
the amount of DNA sequenced often represents only a small 
fraction of all DNA in the sample, and the sequence reads 
can contain a small number of random errors. The main tasks 
in the analysis of metagenomic data involve assembly of 
overlapping reads into larger contigs, identification of genes 
present in the DNA sample, and the phylogenetic 
classification of the sequence reads or contigs. 

This work centers on the phylogenetic classification of 
metagenomic sequences. The task aims to assign each 
sequence read or contig to the species from which the DNA 
originated. There are principally two techniques applicable to 
this task: (a) sequence-similarity based and (b) sequence-
composition based classification. Sequence-similarity 
methods such as BLAST [2] and MEGAN [3] use sequence 
alignment to assign the assembled contigs to reference 
genomes. If a particular read closely resembles a sequence in 
the reference database, one can assume that this read 
originated from the same or related species to that of the 
matching sequence in the database. Sequence-composition 
based techniques such as clustering methods, group the 
sequences based on oligonucleotide composition of the 
assembled contigs. Clustering methods such as K-means can 
be used to cluster the contigs into groups or bins. There is no 
necessity for any kind of reference genomes to assign these 
contigs to bins in unsupervised learning [4]. Sequence 
similarity based techniques can be categorized as supervised 
learners while sequence composition based techniques can 
be classified as unsupervised learners. The significance of 
mapping contigs to the phylogenetic tree is to understand the 
functional and biological roles of these molecules in the 
environment. Mapping contigs to taxonomic classification 
helps to know the composition of these species in the 
environment, and also we can predict the roles of these 



assembled genes by looking at the community to which the 
reads belong [5]. 

The rest of the article is organized as follows: We 
introduce the related work in section II. In section III we 
illustrate our methodology and show how the features are 
extracted from the sequence data. In section IV we present 
the performance of the classifiers. In sections V and VI we 
discuss future work and conclusion. 

II. RELATED WORK 

Metagenomics is a real world problem, where the 
number of sequences increases and there are only a few of 
them which actually have reference genomes. Therefore, 
there is always a need for some probabilistic model, which 
can infer the genus or phyla that the newly sequenced reads 
belong to. Machine learning performs well in this type of 
problem domain as it is capable of learning from a large set 
of labeled or unlabeled data for classification [6]. Utilizing 
the learned models, we can also infer whether a particular 
sequence includes an encoded gene. Machine learning 
algorithms can also be used for predicting novel genes. There 
are many gene finding programs that are available for 
predicting genes in prokaryotic sequences. The Orphelia 
program [7] uses linear discriminants to decrease the number 
of features and then uses artificial neural networks to predict 
genes in the metagenomic sequence reads. In GeneMarkS 
[8], the authors claim that their method (hidden markov 
model) can be used for finding genes in prokaryotic genomes 
without prior knowledge of any proteins. In [4], the authors 
used a naïve Bayesian classifier to bin the metagenomic 
sequences into the respective phylogenetic groups. The other 
prokaryotic gene finding algorithm is MetaGene [9] which 
uses two different methods of feature extraction for bacteria 
and archea. The algorithm is programmed such that it 
switches between the two methods according to the given 
input sequence. The sequences used in the method are taken 
from the Sargasso Sea data set. In [9], the authors were able 
to predict novel genes in addition to the annotated genes. In 
[10], the authors use an incremental clustering approach 
where the data is passed through various stages of clustering.  
They were able to predict the novel genes in metagenomic 
sequences and also group sequences into various families.  

The work in this article is an extension to our previous 
work in this field [11], in which we applied several 
supervised learners and meta-learners to sets of 15 and 25 
species to see which machine learning algorithms perform 
well on such metagenomic data. A total of six supervised 
learners were used namely - decision trees, Naïve Bayes, 
support vector machines, artificial neural networks, Bayesian 
networks and decision tables. The three meta-learners used 
were bagging, boosting and stacking. Results from [11], 
suggest that decision trees, Bayesian networks and decision 
tables perform better than the other learners, and were able to 
classify sequences to their respective species with a high 
degree of accuracy. For a set of 15 species, 91.9% of the 
examples were correctly classified and for a set of 25 species 
86.9% of the examples were correctly classified with the 
decision tree classifier. In this research, we go further to see 

how the performances of the classifiers vary with regard to 
scalability. 

III. EXPERIMENTAL METHODOLOGY 

In this section, we briefly describe the classifiers used in 
our experiments and the algorithm used to extract features 
from the raw assembled sequence data. 

A. Learning Methods 

Machine learning is a branch of artificial intelligence. 
Machine learning algorithms can be applied to a myriad of 
problems ranging from board game playing, face 
recognition, prediction of diseases, etc. One form of learning 
which machine learning deals with is to gather knowledge in 
the form of some abstract concepts and then use those 
concepts to build an overall knowledge base of the given 
problem [12]. In simple terms if a problem has a set of 
examples which represent the underlying concept, the 
machine learning algorithm learns the concept based on 
these examples and when challenged with a query it predicts 
the outcome of the query. The way these algorithms learn a 
concept based on some past experience or knowledge is 
really exceptional. Machine learning algorithms can be 
applied either to problems of classification or regression. In 
classification we have a set of discrete outcomes whereas, 
regression involves mapping the inputs to values in a 
specified continuous range. The outcome is also known as 
„target attribute‟, the one to which the input examples must 
be mapped.  

The set of examples presented to the machine learning 
algorithm is known as the „training set‟. Examples in this set 
consist of a set of attributes or features which represent the 
underlying concept. One of the attributes in the list of 
attributes is known as the „target attribute‟ also known as the 
label or outcome. The query examples are given to the 
algorithm in form of a „testing set‟. The ratio of training and 
testing sets greatly influences the performance of the 
algorithm. The performance drops if very few examples are 
presented to learn the concept. To prevent over-fitting, 
another set called a validation set is often used. The training 
set is randomly split into training and validation sets and the 
algorithm is trained on one set and is tested on the other. 
According to [13], the optimal split for data is to have 1/3 
data for validation and the remaining ratio of train/test set 
can range anywhere between 50/50 to 70/30. The classifiers 
which we use in our experiments are decision trees, Bayesian 
networks and decision tables.  

Decision trees are capable of classifying discrete valued 
target attributes. The algorithm used is J48 which is an 
extension to the C4.5 algorithm, developed by Quinlan in 
1993. The construction of the tree follows a top down 
approach, at each node it chooses the attribute which has a 
high score which is evaluated by a heuristic known as 
information gain. The attribute with the highest value of 
information gain, among all the attributes will be the root of 
the tree [14].  

Let us define the term information gain in more detail. 

Given a set of examples S whose target attribute has two 

outcomes („yes‟ or „no‟). The Entropy of N relative to this 



binary classification is defined as:  

                              (1) 

where   is the proportion of positive examples in S and    

is the proportion of negative examples in S. If the target 

attribute takes on c different values, then the entropy of S 

relative to multi class classification is defined as: 

                     
 
    (2) 

where,    is the proportion of S belonging to class i, where 

„i‟ ranges from 1 to c. 

Information gain Gain(S,A) of an attribute A, relative to 

collection of examples S is defined as: 

                      
    

   
             (3) 

where, v belongs to Values(A) is the set of all possible 

values for feature A, and    is the subset of S for which the 

feature A has value v.  

Information gain is calculated for all the attributes. The 

attribute with the highest information gain is selected as the 

root of the tree. This procedure is repeated recursively and 

information gain is the measure which decides which 

attribute should be the root of the corresponding sub-tree. 

Similar to decision trees, decision tables also model 

complex logic through simple conditions similar to if-then-

else statements. Bayesian networks deal with a set of 

random variables and their conditional dependencies which 

are represented through a probabilistic graph. All three 

above mentioned classifiers are fast and usually just take a 

few minutes to train and classify thousands of instances.  

B. Data Set 

The data used in the experiments was downloaded from 
the Comprehensive Microbial Resource [15]. The data is 
already processed and the sequence reads are in the form of a 
FASTA file for each individual species. A FASTA file has 
many fragments of sequences from the same species. The 
sequence reads in a FASTA file usually start with a sequence 
identifier followed by the sequence itself. The number of 
fragments of sequence reads present in a single FASTA file 
depends on the species selected. The average number of 
reads of DNA sequences in a file of each species would be 
approximately 3500 nucleotides and the length of DNA 
sequence would be between 300-1000 nucleotides. In this 
work we create synthetic metagenomic data by mixing a 
large number of fragments from different species as we do 
not have access to real metagenomic data. 

Two sets of experiments are performed. The first set of 
experiments deals with varying the number of species in the 
sample. The second set of experiments is performed by 
varying the percentage of unknown sequences in the sample. 
The data for the first set of experiments are selected such that 
there are a total of 300 species. The data for second set of 
experiments are selected in such a way that we have three 
different sets called the known set, unknown set (train), 

unknown set (test). For the known set we selected 25 
species. For the unknown set (train) we selected 25 species. 
For the unknown set (test) we selected 50 species. The 
species were randomly selected for the three sets and are 
distinct from each other. 

C. Feature Extraction 

The features we used are the number of ORFs, uni-base 
frequency, di-base frequency, GC content, average length of 
ORF. We find the „Open Reading Frames‟ or ORFs for each 
sequence read. If a start codon and a stop codon are 
separated by at least 54 base pairs, then we consider it as an 
ORF [7]. Codons are triplets in biology. If a codon has a 
pattern such as ATG, CTG, GTG or TTG it is called a start 
codon. Similarly if it has the pattern TGA, TAG or TAA it is 
called a stop codon. As a sequence can be translated in six 
different ways, we find the ORFs in all possible frames (3 on 
the positive strand, 3 on the minus strand). In each ORF we 
find what we call the “uni-base frequency” and the “di-base 
frequency”. Uni-base frequency is the term we use for 
codons which contain one unique nucleotide, namely AAA, 
TTT and so on. Di-base frequency is the term we use for 
codons which contain only two unique nucleotide, namely 
CCG,GGC and so on [11].  The algorithm which we use to 
process the data is simple and works as follows. For each 
sequence read we calculate the number of ORFs, uni-base 
frequency, di-base frequency, GC content and average length 
of ORFs. We generate the features using the above algorithm 
and then use Weka [16] to run the classifiers.  

IV. RESULTS 

In this section, we describe how we evaluate the 
performance of the classifiers and the results of two sets of 
experiments. We chose decision trees, Bayes Nets and 
decision tables as the learning methods.  

For the first set of experiments, we used an 80-20 split of 
the data, where 80% of the data is used for 
training/validation and 20% for testing set.  The classifier is 
evaluated on how well it classifies the 20% of the instances 
in the testing set. Metrics based on which a classifier can be 
evaluated include Sensitivity, Specificity, and Accuracy. We 
calculate the accuracy as the measure of performance for our 
experiments. The accuracy of a classifier is the percentage of 
instances for which the classifier predicts the correct target 
attribute value in the testing set. The main goal of these 
experiments is to see how well the metagenomic sequences 
get mapped to their respective species from which the DNA 
samples originated. The experiments are carried out in the 
following way: We varied the number of species in the 
sample from 15 to 300. The number of instances varied from 
30,000 for 15 species to an order of 800,000 instances for the 
set of 300 species. The training/testing times also varied 
according to the number of instances. Among the three 
classifiers, decision trees are a bit slower compared to other 
learning methods. 

As we can see from Figure 1, the performance of all three 
classifiers is almost the same for any value of species, 
indicating the consistent performance of all three classifiers. 
Also, we notice that the performance of the classifiers drops 



as the number of species increases from 15 to 300. Table I 
shows the accuracy of each classifier for different number of 
species. From Figure 1, we notice that the performance of 
J48 begins to degrade as compared to other algorithms as the 
number of species in the sample increases from 75 to 200. 
We do not have the accuracy value of J48 for 300 species as 
it takes too long to run on a standard desktop machine. 

TABLE I.  ACCURACIES OF THE CLASSIFIERS FOR DIFFERENT VALUES 

OF SPECIES 

Number of 

Species 
J48 Bayes Net 

Decision 

Table 

15 88.61 88.58 89.83 

25 85.17 85.17 84.45 

35 77.25 78.04 77.11 

45 75.65 76.44 75.13 

55 73.61 74.60 73.61 

65 71.52 72.84 71.76 

75 67.85 69.35 68.19 

100 55.43 58.36 57.24 

150 47.69 52.17 51.08 

200 41.79 46.66 45.41 

300 37.56 42.38 40.80 
 

 
Figure 1.  Performance of classifiers with different number of species 

In the second set of experiments, we have three sets of 
species namely - known set, unknown set (train) and 
unknown set (test). We did two experiments, one with 15 
species in the known set and another with 25 species in the 
known set. For the 15 species in the known set, the training 
file consists of 95% sequences from the known set and 5% 
sequences from the unknown set (train). We label the 95% 
sequences which are taken from the known set with their 
respective species names and the 5% sequences taken from 
the unknown set (train) are labeled as „unknowns‟. For the 
testing file we take sequences from the known set and 
unknown set (test), such that we have a series of 8 different 
test files where the percentage of sequences from the 
unknown set (test) vary from 15% to 90%. For each of the 
testing files the species in the known set are labeled with 
their respective species names and sequences from the 
unknown set (test) are labeled as „unknowns‟. In this way, 
we have a total of 16 discrete classes (15 labels for 15 
species in the known set + one label „unknown‟ for species 

in the unknown set) into which these instances are to be 
classified. The classifiers are trained with the training file 
and are then tested on the 8 different test files. 

The same experiment is repeated with 25 species in the 
known set. For the experiment with 15 species in the known 
set, we fixed the number of sequences to 30,000 and for the 
experiment with 25 species the number of sequences is 
50,000.   From Figures 2 & 3, we can see that the accuracy 
of the classifier decreases as the percentage of unknown 
sequences in the sample increases. Also, we can observe that 
when the sample has no unknown sequences the accuracy of 
the classifier is 93% with 15 species and 81% with 25 
species indicating the high performance of the classifiers 
even though the features used were only five. Tables II & III, 
show the accuracy of classifiers for set of 15 and 25 species 
in the known set. 

TABLE II.  ACCURACY OF THE CLASSIFIERS FOR SET OF 15 SPECIES IN 

THE KNOWN SET WITH VARIOUS % OF UNKNOWN SEQUENCES 

% of Unknown 

Sequences 
J48 Bayes Net 

Decision 

Table 

15 60.75 65.17 62.79 

25 58.47 61.65 59.28 

40 56.57 58.42 56.01 

50 54.84 56.41 53.73 

60 53.84 54.96 52.14 

70 52.99 54.01 50.92 

80 52.43 52.79 49.34 

90 51.31 51.17 47.15 
 

 
Figure 2.  Performance of classifiers with different % of unknown 

sequences in 15 species 

TABLE III.  ACCURACY OF THE CLASSIFIERS FOR SET OF 25 SPECIES IN 

THE KNOWN SET WITH VARIOUS % OF UNKNOWN SEQUENCES 

% of Unknown 

Sequences 
J48 Bayes Net 

Decision 

Table 

15 58.31 59.46 58.30 

25 56.97 57.99 56.82 

40 55.89 56.91 55.88 

50 55.36 56.56 55.54 

60 53.61 54.98 54.20 

70 52.50 54.35 53.80 

80 50.99 53.04 52.42 

90 49.38 51.39 50.73 
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Figure 3.  Performance of classifiers with different % of unknown 

sequences in 25 species 

V. FUTURE WORK 

An extension to the work would be to add more 
attributes. New features such as k-mer frequencies and octo-
nucleotides can be added which are representative of the 
underlying data. We can then apply different feature 
selection methods such as wrapper based or filter based 
approaches to see how the classifiers perform. Wrapper 
based methods search through an entire set of features and 
evaluates each subset by running a model for each subset. 
Filter based approaches apply a simple filter to form a subset 
of features rather than evaluating a classifier on those 
features. 

For the scalability study with regard to species we 
considered only one level of classification, i.e. classifying 
the sequence reads into species. We can extend the binning 
process to higher levels in the taxonomy such as the family 
or the class to which a sequence belongs. As we go to a 
higher level of taxonomy the probability that the sequence 
will be classified into correct taxonomic group is higher. We 
can also try to apply meta learners such as bagging, boosting 
and stacking to see how their performance scales. 

VI. CONCLUSION 

The motivation behind this work is twofold; one is to see 
how the performance of the classifiers degrades when the 
number of species in the sample increases and another is to 
see how the performance of the classifiers varies when the 
number of unknown sequences in the sample changes. The 
work is significant as we tried to mimic a real world problem 
of metagenomics, by considering the fact that in a 
metagenomic sample there is little knowledge or no 
knowledge of the species present in the sample. They can 
either be related to each other or might be completely 
different. We notice that the performance of the classifiers 
drops when the number of species in the sample increases 
from 15 to 300. This can be attributed to the fact that when 
the number of species in the sample increases there is more 
chance that the species might be related and in turn this 
decreases the performance of the classifier as it has more 
confusion in classifying them correctly. 

In this article we presented experiments in the context of 
classifying the sequences into the respective species with the 
help of decision trees, Bayesian networks, and decision 
tables. All three learners are fast. The selection of the 
algorithms and features used was good enough as we were 
able to bin the sequences with a much higher accuracy than 
the expected random guessing accuracy. Training and testing 
using approximately 50,000 instances just took a few 
minutes. The features selected, though very few, were good 
at differentiating the data. Finally, the results are very 
promising to the metagenomic researcher as the performance 
degraded very gracefully with the increase in the number of 
species as well as the increase in the proportion of unknown 
sequences. 
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